organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xin-Xiang Lei, Xiao-Bo Huang, An-Jiang Zhang* and Li-Xue Zhang

School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, People's Republic of China

Correspondence e-mail: nmr@wzu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.004 Å R factor = 0.053 wR factor = 0.119 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-(2-Ethoxyphenyl)-6-(phenoxymethyl)-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole

In the title compound, $C_{18}H_{16}N_4O_2S$, the central heterocyclic system formed by the five-membered triazole and thiadiazole rings is planar. The bond lengths within the system indicate some degree of delocalization.

Received 31 August 2006 Accepted 5 September 2006

Comment

1,2,4-Triazolo[3,4-*b*][1,3,4]thiadiazoles possessing the properties of triazoles (Feng *et al.*, 2000) and thiadiazoles (Zhao *et al.*, 2001) are associated with diverse pharmacological activities, such as antimicrobial, bactericidal, anti-inflammatory, antiviral, antihypertensive, anthelmintic and analgesic activities (Zhang *et al.*, 1994; Gupta *et al.*, 1996).

The molecule of the title compound, (I), contains two fivemembered rings, which are essentially coplanar, the dihedral angle between them being 0.6 (3)°. The C1-benzene and C11benzene rings are twisted with respect to the thiadizaole ring, with dihedral angles of 48.7 (2) and 150.2 (3)°, respectively.

Bond lengths within the heterocyclic system (Table 1) indicate some degree of delocalization and agree with those found in similar structures (Fornies-Marquina *et al.*, 1974; Molina *et al.*, 1989; Zhang *et al.*, 1996; Chen *et al.*, 2000; Dong *et al.*, 2002).

Experimental

Compound (I) was prepared in 81% yield from 4-amino-3-(2-ethoxyphenyl)-5-mercapto-1,2,4-triazole (5.0 mmol) and phenoxy-acetic acid (5.5 mmol) in phosphorus oxychloride (20 ml). The reaction mixture was refluxed for 7 h, then poured into crushed ice

© 2006 International Union of Crystallography All rights reserved gradually with stirring. Solid potassium hydroxide was added until the pH = 8. After being allowed to stand overnight, the precipitate was filtered off, washed with cold water, dried and recrystallized from absolute ethanol to afford single crystals of (I).

Crystal data

 $\begin{array}{l} C_{18}H_{16}N_4O_2S\\ M_r = 352.41\\ Monoclinic, P2_1/n\\ a = 10.2328 (9) \text{ Å}\\ b = 8.4172 (7) \text{ Å}\\ c = 20.2015 (18) \text{ Å}\\ \beta = 98.983 (2)^{\circ}\\ V = 1718.6 (3) \text{ Å}^3 \end{array}$

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: none 8831 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.119$ S = 1.093086 reflections 227 parameters H-atom parameters constrained Z = 4 $D_x = 1.362 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.21 \text{ mm}^{-1}$ T = 298 (2) KRod, colorless $0.22 \times 0.21 \times 0.20 \text{ mm}$

3086 independent reflections 2560 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$ $\theta_{\text{max}} = 25.2^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0471P)^{2} + 0.4939P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e} \text{ Å}^{-3}$

Methyl H atoms were placed in calculated positions, with C–H = 0.96 Å and $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$. Other H atoms were positioned geometrically, with C–H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

Figure 1

The molecular structure of (I), shown with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. M203149).

References

Bruker (2002). SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, H.-S., Li, Z.-M., Yang, X.-P., Wang, H.-G. & Yao, X.-K. (2000). Chin. J. Struct. Chem. 19, 317–321.

Dong, H.-S., Quan, B., Zhu, D.-W. & Li, W.-D. (2002). J. Mol. Struct. 613, 1–5.
Feng, Zh.-X., Zhang, W.-N., Zhou, Y.-J., Lu, J.-G., Zhu, J. & Li, K. (2000).
Chem. J. Chin. Univ. 21, 1221–1226.

Fornies-Marquina, J., Courseille, C. & Elguero, J. (1974). Cryst. Commun. 3, 7–9.

Gupta, R., Sudan, S., Mengi, V. & Kachroo, P. L. (1996). Indian J. Chem. Sect. B, 35, 621–623.

Molina, P., Arques, A., Alias, M. A., Llamos Saiz, A. L. & Foces-Foces, M. C. (1989). *Liebigs Ann. Chem.* pp. 1055–1059.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Zhang, Z.-Y., Zhao, L. & Li, M. (1994). Chin. J. Org. Chem. 14, 74-80.

Zhang, Z.-Y., Zou, N., Zhu, Y., Zhao, L. & Li, M. (1996). Acta Cryst. C52, 2787–2789.

Zhao, W.-G., Chen, H.-S., Li, Zh.-M., Han, Y.-F., Lai, J.-Y. & Wang, S.-H. (2001). Chem. J. Chin. Univ. 22, 939–942.